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Adaptation Regularization: A General
Framework for Transfer Learning

Mingsheng Long, Jianmin Wang, Guiguang Ding, Sinno Jialin Pan, and Philip S. Yu, Fellow, IEEE

Abstract—Domain transfer learning, which learns a target classifier using labeled data from a different distribution, has shown
promising value in knowledge discovery yet still been a challenging problem. Most previous works designed adaptive classifiers by
exploring two learning strategies independently: distribution adaptation and label propagation. In this paper, we propose a novel
transfer learning framework, referred to as Adaptation Regularization based Transfer Learning (ARTL), to model them in a unified way
based on the structural risk minimization principle and the regularization theory. Specifically, ARTL learns the adaptive classifier by
simultaneously optimizing the structural risk functional, the joint distribution matching between domains, and the manifold consistency
underlying marginal distribution. Based on the framework, we propose two novel methods using Regularized Least Squares (RLS)
and Support Vector Machines (SVMs), respectively, and use the Representer theorem in reproducing kernel Hilbert space to derive
corresponding solutions. Comprehensive experiments verify that ARTL can significantly outperform state-of-the-art learning methods
on several public text and image datasets.

Index Terms—Transfer learning, adaptation regularization, distribution adaptation, manifold regularization, generalization error

1 INTRODUCTION

IT is very difficult, if not impossible, to induce a
supervised classifier without any labeled data. For the

emerging domains where labeled data are sparse, to save
the manual labeling efforts, one may expect to leverage
abundant labeled data available in a related source domain
for training an accurate classifier to be reused in the target
domain. Recently, the literature has witnessed an increasing
interest in developing transfer learning [1] methods for cross-
domain knowledge transfer problems. Transfer learning has
proven to be promising in many real-world applications,
e.g., text categorization [2], [3], sentiment analysis [4], [5],
image classification [6] and retrieval [7], video summariza-
tion [8], and collaborative recommendation [9].

Recall that the probability distributions in different
domains may change tremendously and have very different
statistical properties, e.g., mean and variance. Therefore,
one major computational issue of transfer learning is
how to reduce the difference in distributions between the
source and target data. Recent works aim to discover a
good feature representation across domains, which can
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simultaneously reduce the distribution difference and pre-
serve the important properties of the original data [10].
Under the new feature representation, standard supervised
learning algorithms can be trained on source domain and
reused on target domain [11], [12]. Pan et al. [11] pro-
posed Maximum Mean Discrepancy Embedding (MMDE),
in which the MMD [13] distance measure for comparing dif-
ferent distributions is explicitly minimized. Si et al. [12] pro-
posed a general Transfer Subspace Learning (TSL) frame-
work, in which the Bregman divergence is imposed as
a regularization to a variety of subspace learning meth-
ods, e.g., PCA and LDA. Another line of works aims to
directly construct an adaptive classifier by imposing the
distance measure as a regularization to supervised learn-
ing methods, e.g., SVMs [14]–[17]. However, these methods
only utilized the source domain labeled data to train a
classifier. We show that such labeled data can be further
explored to reduce the difference in the conditional distri-
butions across domains. Also, these methods only utilized
the target domain unlabeled data to reduce the differ-
ence in the marginal distributions across domains. We show
that these unlabeled data can be further explored to boost
classification performance.

It is noteworthy that, in some real-world scenarios, only
minimizing difference in marginal distributions between
domains is not good enough for knowledge transfer, since
the discriminative directions of the source and target
domains may still be different [10], [18]. Therefore, another
major computational issue of transfer learning is how to
further explore marginal distributions to potentially match
the discriminative directions between domains. In this
direction, the unlabeled data may often reveal the underly-
ing truth of the target domain [19]–[21]. Bruzzone et al. [19]
proposed Domain Adaptation Support Vector Machine
(DASVM), which extended Transductive SVM (TSVM) to
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Fig. 1. Motivation of ARTL. f : hyperplane; Ds : source domain; Dt :
target domain; ◦: domain/class centroid; MDA: marginal distribution
adaptation; CDA: conditional distribution adaptation; MR: manifold
regularization. (a) Original domains. (b) After MDA. (c) After CDA.
(d) After MR.

progressively classify the unlabeled target data and simul-
taneously remove some labeled source data. Bahadori
et al. [20] proposed Latent Transductive Transfer Learning
(LATTL) to combine subspace learning and transductive
classification (TSVM) in a unified framework. However,
all these methods adopt TSVM as building block, which
is difficult to solve and is not natural for out-of-sample
data [22]. In addition, these methods do not minimize
the difference between the conditional distributions across
domains.

Based on the aforementioned discussions, we summarize
the computational issues of transfer learning in Fig. 1 and
highlight our motivation. Given a labeled source domain Ds
and an unlabeled target domain Dt as in subplot (a), we can
see that hyperplane f trained on Ds cannot discriminate Dt
correctly due to substantial distribution difference. Similar
to most previous works, we minimize the distance between
the marginal distributions in subplot (b), i.e., the sample
moments of the two domains are drawn closer. Then hyper-
plane f can classify Dt more correctly. Noteworthily, it is
indispensable to minimize the distance between the con-
ditional distributions as in subplot (c), which can make the
intra-class centroids close and the inter-class centroids more
separable. Finally, as shown in subplot (d), it is impor-
tant to maximize the manifold consistency underlying the
marginal distributions, which can “rotate” hyperplane f to
respect the groundtruth of the target data. This motivates us
to design a general framework to integrate all these learning
objectives.

In this paper, we propose a general transfer learning
framework, referred to as Adaptation Regularization based
Transfer Learning (ARTL), to model the joint distribution
adaptation and manifold regularization in a unified way
underpinned by the structural risk minimization princi-
ple and the regularization theory. More specifically, ARTL
learns an adaptive classifier by simultaneously optimizing
the structural risk functional, the joint distribution match-
ing between both marginal and conditional distributions,
and the manifold consistency of the marginal distribu-
tion. The contributions of this paper are summarized as
follows.

• To cope with the considerable change between data
distributions from different domains, ARTL aims to
minimize the structural risk functional, joint adapta-
tion of both marginal and conditional distributions,
and the manifold regularization. To the best of our
knowledge, ARTL is the first semi-supervised domain
transfer learning framework which can explore all
these learning criteria simultaneously. In particular,

ARTL remains simple by introducing only one addi-
tional term (parameter) compared with the state-of-
the-art graph-based semi-supervised learning frame-
work [22].

• Many standard supervised methods, e.g., RLS and
SVMs, can be incorporated into the ARTL frame-
work to tackle domain transfer learning. A revised
Representer theorem in the Reproducing Kernel
Hilbert Space (RKHS) is presented to facilitate easy
handling of optimization problems.

• Under the ARTL framework, we further propose two
novel methods, i.e., ARRLS and ARSVM, respec-
tively. Both of them are convex optimization prob-
lems enjoying the global optimal solutions.

• Comprehensive experiments on text (Reuters-21578
and 20-Newsgroups) and image (PIE, USPS, and
MNIST) datasets verify the effectiveness of the ARTL
framework in real-world applications.

The remainder of the paper is organized as follows. We
start by reviewing related works in Section 2. In Section 3,
we present the ARTL framework, the two methods ARRLS
and ARSVM, and the analysis of time complexity. In
Sections 4 and 5, we theoretically analyze the generaliza-
tion error bound of ARTL, and conduct empirical studies
on real-world datasets, respectively. Finally, we conclude
the paper in Section 6.

2 RELATED WORK

In this section, we discuss previous works on transfer
learning that are most related to our work, and highlight
their differences. According to literature survey [1], most
previous methods can be roughly organized into two cat-
egories: instance reweighting [23], [24] and feature extraction.
Our work belongs to the feature extraction category, which
includes two subcategories: transfer subspace learning and
transfer classifier induction.

2.1 Transfer Subspace Learning
These methods aim to extract a shared subspace in which
the distributions of the source and target data are drawn
close. Typical learning strategies includes:

1) Correspondence Learning, which first identifies the
correspondence among features and then explores
this correspondence for transfer subspace learn-
ing [4], [5];

2) Property Preservation, which extracts shared latent
factors between domains by preserving the impor-
tant properties of the original data, e.g., statistical
property [2], [25], geometric structure [26]–[28], or
both [3];

3) Distribution Adaptation, which learns a shared sub-
space where the distribution difference is explicitly
reduced by minimizing predefined distance mea-
sures, e.g., MMD or Bregman divergence [10]–[12],
[29].

2.2 Transfer Classifier Induction
These methods aim to directly design an adaptive classifier
by incorporating the adaptation of different distributions
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through model regularization. For easy discussion, the
learning strategies of these methods are summarized as
below. Our ARTL framework belongs to this subcategory,
with substantial extensions.

1) Subspace Learning + Classifier Induction: These meth-
ods simultaneously extract a shared subspace and
train a supervised [30] or semi-supervised classi-
fier [20] in this subspace. The advantage is that
the subspace and classifier can establish mutual
reinforcement. Different from these methods, ARTL
does not involve subspace learning and thus is more
generic.

2) Distribution Adaptation + Classifier Induction: These
methods directly integrate the minimization of dis-
tribution difference as a regularization term to the
standard supervised classifier [15]–[17], [19]. But all
these methods only minimize the distance between
the marginal distributions. Different from these
methods, ARTL minimizes the distance between
both the marginal and conditional distributions. Our
work also explores manifold structure to improve
performance.

3) Feature Replication + Co-Regularization: In these
methods, the distribution difference is firstly
reduced through feature replication, then both the
source and target classifiers are required to agree
on the unlabeled target data [31]. These methods
require some labeled data in target domain, which
is not required by ARTL.

4) Parameter Sharing + Manifold Regularization: This
strategy is explored by semi-supervised multi-task
learning methods [32], [33], which aim to improve
the performance of multiple related tasks by explor-
ing the common structure through a common prior.
However, these methods ignore the distribution
adaptation between multiple tasks, which is differ-
ent from ARTL.

5) Kernel Matching + Manifold Regularization: These
methods simultaneously perform classifier induc-
tion, kernel matching, and manifold preserva-
tion [21]. The differences between these methods
and ARTL are that: 1) these methods do not reduce
the distance between conditional distributions; 2)
kernel matching is usually formulated as an inte-
ger program, which is difficult to solve; and 3) it is
difficult to encode kernel matching as a regulariza-
tion to standard classifiers, as a result a Representer
theorem is missing for these methods.

3 ADAPTATION REGULARIZATION BASED
TRANSFER LEARNING FRAMEWORK

In this section, we first define the problem setting and learn-
ing goal for domain transfer learning. After that, we present
the proposed general framework, ARTL. Based on the
framework, we propose two methods using RLS and SVMs,
and derive learning algorithms using the Representer
theorem in RKHS. Finally, we analyze the computational
complexity of the algorithms.

TABLE 1
Notations and Descriptions Used in this Paper

3.1 Problem Definition
Notations, which are frequently used in this paper, are
summarized in Table 1.

Definition 1 (Domain). [1] A domain D is composed of a
d-dimensional feature space X and a marginal probability
distribution P(x), i.e., D = {X , P(x)}, where x ∈ X .

In general, if two domains Ds and Dt are different,
then they may have different feature spaces or marginal
distributions, i.e., Xs �= Xt ∨ Ps(xs) �= Pt(xt).

Definition 2 (Task). [1] Given domain D, a task T is com-
posed of a label space Y and a prediction function f (x), i.e.,
T = {Y, f (x)}, where y ∈ Y , and f (x) = Q(y|x) can be
interpreted as the conditional probability distribution.

In general, if two tasks Ts and Tt are different, then they
may have different label spaces or conditional distributions,
i.e., Ys �= Yt ∨ Qs(ys|xs) �= Qt(yt|xt).

Definition 3 (Domain Transfer Learning). Given labeled
source domain Ds = {(x1, y1), . . . , (xn, yn)} and unlabeled
target domain Dt = {xn+1, . . . , xn+m}, the goal of domain
transfer learning is to learn a target prediction function
ft:xt �→ yt with low expected error on Dt, under the
assumptions Xs = Xt, Ys = Yt, Ps(xs) �= Pt(xt), and
Qs(ys|xs) �= Qt(yt|xt).

To address domain transfer learning problems directly
by estimating the distribution densities is challenging.
Although the marginal distribution Pt(xt) can be estimated
using kernel density estimate (KDE) [18], it is impossi-
ble for the conditional distribution Qt(yt|xt) since there
are no labeled data in the target domain. Most previ-
ous works thus assume that there exists a proper fea-
ture transformation F such that Ps(F(xs)) = Pt(F(xt)),
Qs(ys|F(xs)) ≈ Qt(yt|F(xt)). The transformation F can be
inferred by minimizing the distribution distance between
marginal distributions, and preserving properties of original
data [10].

In this paper, we put forward several justifications.

• It is insufficient to minimize only the distribution dis-
tance between the marginal distributions. The distri-
bution distance between the conditional distributions
should also be explicitly minimized.

• It is useful to further explore the marginal distribu-
tions. Noteworthily, preserving manifold consistency
underlying the marginal distribution can benefit us
from semi-supervised learning [22].

• It may be more generic to explore the data
distributions in original feature space or kernel
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space, instead of various dimension-reduced sub-
spaces.

Based on these justifications, we propose our general ARTL
framework in the following section.

3.2 General Framework
We design the general ARTL framework underpinned by
the structural risk minimization principle and the regu-
larization theory. Specifically, we aim to optimize three
complementary objective functions as follows:

1) Minimizing the structural risk functional on the
source domain labeled data Ds;

2) Minimizing the distribution difference between the
joint probability distributions Js and Jt;

3) Maximizing the manifold consistency underlying
the marginal distributions Ps and Pt.

Suppose the prediction function (i.e., classifier) be
f = wTφ(x), where w is the classifier parameters, and
φ:X �→ H is the feature mapping function that projects the
original feature vector to a Hilbert space H. The learning
framework of ARTL is formulated as

f = arg min
f∈HK

n∑

i=1

�
(
f (xi) , yi

)+ σ
∥∥f
∥∥2

K

+ λDf ,K (Js, Jt) + γ Mf ,K (Ps, Pt) ,

(1)

where K is the kernel function induced by φ such that〈
φ (xi) , φ

(
xj
)〉 = K

(
xi, xj

)
, and σ , λ, and γ are posi-

tive regularization parameters. We interpret each term of
Framework (1) in the following subsections.

3.2.1 Structural Risk Minimization
Our ultimate goal is to learn an adaptive classifier for the
target domain Dt. To begin with, we can induce a standard
classifier f on the labeled source domain Ds. We adopt the
structural risk minimization principle [34], and minimize
the structural risk functional as

f = arg min
f∈HK

n∑

i=1

�
(
f (xi) , yi

)+ σ
∥∥f
∥∥2

K , (2)

where HK is a set of classifiers in the kernel space, ‖f‖2
K

is the squared norm of f in HK, σ is the shrinkage regular-
ization parameter, and � is the loss function that measures
the fitness of f for predicting the labels on training sam-
ples. Two widely-used loss functions are the hinge loss for
SVMs � = max

(
0, 1 − yif (xi)

)
, and the squared loss for RLS

� = (
yi − f (xi)

)2.

3.2.2 Joint Distribution Adaptation
Unfortunately, the standard classifier f inferred by (2) may
not generalize well to the target domain Dt, since the struc-
tural risk minimization principle requires the training and
test data to be sampled from identical probability distri-
bution [34]. Thus the first major computational issue is
how to minimize the distribution distance between the
joint probability distributions Js and Jt. By probability the-
ory, J = P · Q, thus we seek to minimize the distribution
distance 1) between the marginal distributions Ps and Pt,

and 2) between the conditional distributions Qs and Qt,
simultaneously.

Marginal Distribution Adaptation: We minimize
Df ,K(Ps, Pt), the distance between marginal distributions Ps
and Pt. Since directly estimating probability densities is
nontrivial, we resort to explore nonparametric statistics. We
adopt empirical Maximum Mean Discrepancy (MMD) [11],
[13] as the distance measure, which compares different
distributions based on the distance between the sample
means of two domains in a reproducing kernel Hilbert
space (RKHS) H, namely

MMD2
H (Ds,Dt) =

∥∥∥∥∥∥
1
n

n∑

i=1

φ (xi) − 1
m

n+m∑

j=n+1

φ
(
xj
)
∥∥∥∥∥∥

2

H

,

where φ:X �→ H is the feature mapping. To make MMD
a proper regularization for the classifier f , we adopt the
projected MMD [15], which is computed as

Df ,K (Ps, Pt) =
∥∥∥∥∥∥

1
n

n∑

i=1

f (xi) − 1
m

n+m∑

j=n+1

f
(
xj
)
∥∥∥∥∥∥

2

H

, (3)

where f (x) = wTφ(x), and K is the kernel function induced
by φ such that

〈
φ (xi) , φ

(
xj
)〉 = K

(
xi, xj

)
.

Conditional Distribution Adaptation: We minimize
Df ,K(Qs, Qt), the distance between conditional distributions
Qs and Qt. Since calculating the nonparametric statistics of
Qs(ys|xs) and Qt(yt|xt) is difficult, we resort to explore the
nonparametric statistics of Qs(xs|ys) and Qt(xt|yt) instead,
which can well approximate Qs(ys|xs) and Qt(yt|xt) when
sample sizes are large. Unfortunately, it is impossible to cal-
culate the sample moments of Qt(xt|yt) w.r.t. each class (class
centroids), since there are no labels in the target domain data.
In this paper, we propose to use the pseudo target labels pre-
dicted by some supervised classifiers (e.g., SVMs) trained
on the source domain labeled data. Though many of the
pseudo target labels may be incorrect due to substantial
distribution difference, we assume that the pseudo class
centroids calculated by them may reside not far apart from
the true class centroids. Therefore, we can use both true and
pseudo labels to compute the projected MMD w.r.t. each
class c ∈ {1, . . . , C} and make the intra-class centroids of two
distributions Qs(xs|ys) and Qt(xt|yt) closer in H

D(c)
f ,K(Qs,Qt)=

∥∥∥∥∥∥∥
1

n(c)
∑

xi∈D(c)
s

f (xi)− 1
m(c)

∑

xj∈D(c)
t

f
(

xj

)
∥∥∥∥∥∥∥

2

H

, (4)

where D(c)
s = {

xi:xi ∈ Ds ∧ y (xi) = c
}

is the set of exam-
ples belonging to class c in the source data, y (xi) is the
true label of xi, and n(c) = |D(c)

s |. Correspondingly, D(c)
t ={

xj:xj ∈ Dt ∧ ŷ
(
xj
) = c

}
is the set of examples belonging to

class c in the target data, ŷ
(
xj
)

is the pseudo (predicted)
label of xj, and m(c) = |D(c)

t |.
Integrating (3) and (4) leads to the regularization for joint

distribution adaptation, computed as follows

Df ,K (Js, Jt) = Df ,K (Ps, Pt) +
C∑

c=1

D(c)
f ,K (Qs, Qt). (5)

By regularizing (2) with (5), the sample moments of both
the marginal and conditional distributions are drawn closer
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in H. It is noteworthy that, if we use an adaptive classifier
to obtain the pseudo labels, then we can usually obtain a
more accurate labeling for the target data, which can further
boost classification accuracy. ARTL can readily integrate
any base classifiers by (5).

3.2.3 Manifold Regularization
In domain transfer learning, there are both labeled and
unlabeled data. Since by using (5) we can only match the
sample moments between different distributions, but we
expect that knowledge of the marginal distributions Ps
and Pt can be further exploited for better function learn-
ing. In other words, the unlabeled data may often reveal
the underlying truth of the target domain, e.g., the sam-
ple variances. By the manifold assumption [22], if two points
xs, xt ∈ X are close in the intrinsic geometry of the marginal
distributions Ps(xs) and Pt(xt), then the conditional distri-
butions Qs(ys|xs) and Qt(yt|xt) are similar. Under geodesic
smoothness, the manifold regularization is computed as

Mf ,K (Ps, Pt) =
n+m∑

i,j=1

(
f (xi) − f

(
xj
))2Wij

=
n+m∑

i,j=1

f (xi) Lijf
(
xj
)
, (6)

where W is the graph affinity matrix, and L is the normal-
ized graph Laplacian matrix. W is defined as

Wij =
{

cos
(
xi, xj

)
, if xi ∈ Np

(
xj
) ∨ xj ∈ Np (xi)

0, otherwise,
(7)

where Np (xi) is the set of p-nearest neighbors of point xi.
L is computed as L = I − D−1/2WD−1/2, where D is a
diagonal matrix with each item Dii = ∑n

j=1 Wij.
By regularizing (2) with (6), the marginal distributions

can be fully exploited to maximize the consistency between
the predictive structure of f and the intrinsic manifold
structure of the data. This can substantially match the
discriminative hyperplanes between domains.

3.3 Learning Algorithms
We extend standard algorithms (RLS and SVMs) under the
ARTL framework with different choices of loss functions �.
The major difficulty lies in that the kernel mapping φ:X �→
H may have infinite dimensions. To solve (1) effectively,
we need to reformulate it by using the following revised
Representer theorem.

Theorem 1 (Representer Theorem). [22], [35] The mini-
mizer of optimization problem (1) admits an expansion

f (x) =
n+m∑

i=1

αiK (xi, x) and w =
n+m∑

i=1

αiφ (xi) (8)

in terms of the cross-domain labeled and unlabeled examples,
where K is a kernel induced by φ, αi is a coefficient.

We focus on reformulating the regularization. By incor-
porating Equation (8) into Equation (5), we have

Df ,K (Js, Jt) = tr
(
αTKM0Kα

)
+

C∑

c=1

tr
(
αTKMcKα

)

= tr
(
αTKMKα

)
with M =

C∑

c=0

Mc,

(9)

where K ∈ R
(n+m)×(n+m) is kernel matrix with Kij =

K(xi, xj), α = (α1, . . . , αn+m) is classifier parameters. Mc, c ∈
{0, 1, . . . , C} are MMD matrices computed as

(Mc)ij =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

1
n(c)n(c) , xi, xj ∈ D(c)

s
1

m(c)m(c) , xi, xj ∈ D(c)
t

−1
n(c)m(c) ,

{
xi ∈ D(c)

s , xj ∈ D(c)
t

xj ∈ D(c)
s , xi ∈ D(c)

t

0, otherwise,

(10)

where n(c), m(c),D(c)
s ,D(c)

t , c ∈ {1, . . . , C} are defined as (4).
For clarity, we can also compute M0 with (10) if substituting
n(0) = n, m(0) = m,D(0)

s = Ds,D(0)
t = Dt.

Similarly, by incorporating (8) into (6), we obtain

Mf ,K (Ps, Pt) = tr
(
αTKLKα

)
. (11)

With (9) and (11), we can readily implement new algorithms
under ARTL by extending RLS and SVMs.

3.3.1 ARRLS: ARTL Using Squared Loss

Using squared loss �
(
f (xi), yi

) = (
yi − f (xi)

)2, the structural
risk functional can be formulated as follows

n∑

i=1

�
(
f (xi) , yi

)+ σ
∥∥f
∥∥2

K

=
n+m∑

i=1

Eii
(
yi − f (xi)

)2 + σ
∥∥f
∥∥2

K , (12)

where E is a diagonal label indicator matrix with each
element Eii = 1 if xi ∈ Ds, and Eii = 0 otherwise. By
substituting Representer theorem (8) into (12), we obtain

n∑

i=1

�
(
f (xi) , yi

)+ σ
∥∥f
∥∥2

K

=
∥∥∥
(

Y − αTK
)

E
∥∥∥

2

F
+ σ tr

(
αTKα

)
, (13)

where Y = [y1, . . . , yn+m] is the label matrix. It is no
matter that the target labels are unknown, since they are
filtered out by the label indicator matrix E. Integrating
Equations (13), (9), and (11) into Framework (1), we obtain
the objective for ARRLS based on RLS:

α = arg min
α∈Rn+m

∥∥∥
(

Y − αTK
)

E
∥∥∥

2

F

+tr
(
σαTKα + αTK (λM + γ L) Kα

)
. (14)

Setting derivative of objective function as 0 leads to

α = ((E + λM + γ L) K + σ I)−1EYT. (15)

Note that when λ = γ = 0, (15) gives zero coefficients
over the joint distribution adaptation and manifold
regularization and thus degenerates to standard RLS.
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Multi-Class Extension: Denote y ∈ R
C a label vector

such that yc = 1 if y(x) = c, and yc = 0 otherwise. The
label matrix is Y = [y1, . . . , yn+m] ∈ R

C×(n+m), and the
parameter matrix is α ∈ R

(n+m)×C. In this way, ARRLS can
be extended to multi-class problems.

3.3.2 ARSVM: ARTL Using Hinge Loss
Using hinge loss �

(
f (xi), yi

) = max
(
0, 1 − yif (xi)

)
, the

structural risk functional can be formulated as
n∑

i=1

�
(
f (xi) , yi

)+ σ
∥∥f
∥∥2

K

=
n∑

i=1

max
(
0, 1 − yif (xi)

)+ σ
∥∥f
∥∥2

K . (16)

By substituting the Representer theorem (8) into (16), and
integrating Equations (16), (9), and (11) into (1), we obtain
the objective for ARSVM based on SVMs:

min
α∈Rn+m,ξ∈Rn

n∑

i=1

ξi + σαTKα + αTK (λM + γ L) Kα

s.t. yi

⎛

⎝
n+m∑

j=1

αjK
(
xi, xj

)+ b

⎞

⎠ ≥ 1 − ξi, i = 1, . . . , n

ξi ≥ 0, i = 1, . . . , n. (17)

To solve Equation (17) effectively, we follow [22] and
reformulate (17) using Lagrange dual, which leads to

β = arg max
β∈Rn

n∑

i=1

βi − 1
2
βTQβ

s.t.
n∑

i=1

βiyi = 0, 0 ≤ βi ≤ 1
n

, i = 1, . . . , n

with Q = ỸẼK(2σ I + 2 (λM + γ L) K)−1ẼTỸ,

(18)

where Ỹ = diag(y1, . . . , yn), Ẽ = [In, 0] ∈ R
n×(n+m).

ARSVM can be easily implemented by using a standard
SVM solver with the quadratic form induced by the Q
matrix, and then using β to obtain the classifier parameters
by α = (2σ I + 2 (λM + γ L) K)−1ẼTỸβ.

The learning algorithms are summarized in Algorithm 1.
To make parameters λ and γ easily tuned, we normalize
graph Laplacian matrix and MMD matrix.

3.4 Computational Complexity
Denote s the average number of non-zero features per
example, s ≤ d, p � min(n + m, d). The computational
complexity of the framework consists of three parts.

1) Solving the linear systems (15) or (18) using LU
decomposition requires O((n + m)3), which may
be greatly reduced using the conjugate gradient
method. For ARSVM, solving the SVM optimiza-
tion (18) with a widely-used SVM solver [36]
requires O((n + m)2.3).

2) For constructing the graph Laplacian matrix L, ARTL
needs O

(
s(n + m)2), which is performed once.

3) For constructing the kernel matrix K and aggregate
MMD matrix M, ARTL requires O

(
C(n + m)2).

In summary, the computational complexity of
Algorithm 1 is O

(
(n + m)3 + (s + C) (n + m)2) using

exact computations, which is adopted in this paper. It is
not difficult to speed up the algorithms using conjugate
gradient methods, and this is left for our future work.

3.5 Connections to Existing Works
As discussed in Section 2, our work is substantially differ-
ent from a variety of prior cross-domain learning methods
such as [4]–[6], [25], [37], which do not explicitly consider
distribution matching or manifold regularization. In this
subsection, we will specifically distinguish our work from
an insightful perspective.

Distribution Adaptation: These methods explicitly reduce
distribution difference by minimizing predefined distance
measures, e.g., MMD or Bregman divergence [11], [12],
[14]–[17], [19]. However, they only reduce the distance
between marginal distributions, while the distance between
conditional distributions is not minimized. Several works
considered to match both the marginal and conditional dis-
tributions [18], [29], however, they require some labeled
data in the target domain, which are not required by
our method. Also, the manifold structure underlying
the marginal distributions is not considered in all these
methods.

Manifold Regularization: These methods explicitly maxi-
mize the consistency of the induced embeddings (subspace
learning) [3], [26]–[28] or classifiers (supervised learn-
ing) [22], [33] with respect to the intrinsic manifold struc-
ture. However, these methods have not explicitly reduced
the distribution difference between domains and may over-
fit target domain data.

To our knowledge, the works most closely related to
our ARTL are Graph co-regularized Transfer Learning
(GTL) [3], Semi-Supervised Transfer Component Analysis
(SSTCA) [10], Discriminative Feature Extraction (DFE) [30],
Latent Transductive Transfer Learning (LATTL) [20], and
Semi-Supervised Kernel Matching (SSKM) [21]. All these
methods can be categorized as “semi-supervised transfer
learning”, since they have explored the combination of
semi-supervised learning and transfer learning. For clear
comparison, the difference between these methods is illus-
trated in Table 2.
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TABLE 2
Comparison between Most Closely Related Works

• GTL and SSTCA are dimensionality reduction meth-
ods where label information and manifold structure
are explored only for subspace learning. Our ARTL
is a framework for adaptive classifiers.

• DFE is a joint learning method for distribution adap-
tation and classifier training. It explores the manifold
structure in a separated second step, also it does not
match the conditional distributions.

• LATTL is a combination of subspace learning and
transductive classification. By using Transductive
SVM (TSVM) to explore both the labeled and unla-
beled data, LATTL can naturally achieve a better
generalization capability to the target domain. It has
two weaknesses: 1) it does not explicitly reduce dis-
tribution distance; 2) its TSVM learning framework
is not natural for out-of-sample data.

• SSKM is the most similar work to ours. It simultane-
ously considers structural risk minimization, kernel
matching, and manifold preservation. The differ-
ences between SSKM and ARTL are that: 1) SSKM
does not reduce the distance between conditional
distributions; 2) the kernel matching is an integer
programming problem and is difficult to solve; and
3) the kernel matching is not directly imposed as a
regularization to the classifier, thus it does not exhibit
a generic Representer theorem.

In summary, our proposed ARTL can simultaneously
explore 1) structural risk minimization, 2) distribution
adaptation of both the marginal and conditional distribu-
tions, and 3) manifold consistency maximization. ARTL is
underpinned by the regularization theory in RKHS, and
can exhibit a revised Representer theorem. Thus ARTL is a
general framework in which a variety of supervised algo-
rithms can be readily incorporated. Furthermore, ARTL is
a convex optimization problem enjoying global optima. We
will compare ARTL with TCA and SSKM empirically to
validate its advantage.

4 GENERALIZATION BOUND ANALYSIS

We analyze the generalization error bound of ARTL on
the target domain based on the structural risk on the
source domain, following the approaches in [30], [38].
First, we denote the induced prediction function as f (x) =
sgn

(
wTφ (x)

)
, and the true labeling function as h(x):X �→

{1,−1}. Let �(x) be a continuous loss function � (x) =∣∣h (x) − f (x)
∣∣, then 0 ≤ � (x) ≤ 2. First of all, the expected

error of f in Dt is defined as

εt
(
f
) = Ex∼Pt

[∣∣h (x) − f (x)
∣∣] = Ex∼Pt [� (x)] .

Similarly, the expected error of f in Ds is defined as

εs
(
f
) = Ex∼Ps

[∣∣h (x) − f (x)
∣∣] = Ex∼Ps [� (x)] .

Now we present the target error bound in terms of the
source risk in the following theorem, which is essentially a
restatement of [38] with a slight modification.

Theorem 2. Suppose the hypothesis space containing f is of VC-
dimension d, then the expected error of f in Dt is bounded with
probability at least 1 − δ by

εt
(
f
) ≤ ε̂s

(
f
)+

√
4
n

(
d log

2en
d

+ log
4
δ

)

+Df ,K (Js, Jt) + �, (19)

where e is the base of natural logarithm, ε̂s(f ) is the empirical
error of f in Ds, and � = inff∈HK

[
εs
(
f
)+ εt

(
f
)]

.

From Theorem 2, the expected error in Dt, i.e., εt(f ), is
bounded if we can simultaneously minimize 1) the empiri-
cal error of labeled data in Ds, i.e., ε̂s(f ), 2) the distribution
distance between Ds and Dt in RKHS H, i.e., Df ,K(Js, Jt),
and 3) the adaptability of the true function h in terms of
hypothesis space HK, i.e., �.

In ARTL framework, i.e., Equation (1), ε̂s(f ) is explicitly
minimized by structural risk minimization in Equation (2);
Df ,K(Js, Jt) is explicitly minimized by distribution adapta-
tion in Equation (5); � is implicitly minimized by manifold
regularization in Equation (6).

Non-rigorously, we interpret why manifold regulariza-
tion in Equation (6) can implicitly minimize �, the adapt-
ability of the true function h in terms of the hypothesis
space HK. First, we introduce the following theorem, which
states the error bound of semi-supervised learning based on
manifold regularization.

Theorem 3. [39] Consider collection (xi, yi) for i ∈ Zn+m =
{1, . . . , n+m}. Assume that we randomly pick n distinct inte-
gers j1, . . . , jn from Zn+m uniformly (without replacement),
and denote it by Zn. Let h be the true predictor and f̂(Zn) be
the semi-supervised learner trained using labeled data in Zn
and unlabeled data in Zn+m\Zn

f̂ (Zn) = arg inf
f∈Rn+m

⎡

⎣ 1
n

∑

i∈Zn

�
(
fi, yi

)+ γ fTLf

⎤

⎦ .

if
∣∣ ∂
∂h�

(
h, y

)∣∣ ≤ τ , and �(h, y) is convex with respect to h,
then we have the generalization error bound on Zn+m\Zn

EZn

1
m

∑

i∈Zn+m\Zn

�
(

f̂i (Zn) , yi

)

≤ inf
f∈Rn+m

[
1

n + m

n+m∑

i=1

�
(
fi, yi

)+ γ fTLf + τ 2tr
(
L−1)

2γ n (n + m)

]
.

In ARTL, manifold regularization (6) is performed in
RKHS H where the distribution distance has been mini-
mized by Equation (5). Thus, Theorem 3 states that, the
classifier f̂ trained in a semi-supervised way on Ds ∪ Dt
in RKHS H can be guaranteed by an error bound in Dt.
In other words, the manifold regularization (6) can implic-
itly minimize �, the adaptability of true function h in terms
of the hypothesis space HK.
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TABLE 3
Top Categories and Subcategories in 20-Newsgroups

5 EXPERIMENTS

In this section, we perform extensive experiments on two
real-world applications (i.e., text classification and image
recognition) to evaluate ARTL. Datasets and codes will be
available online upon publication.

5.1 Data Preparation
5.1.1 Text Datasets
The 219 cross-domain text datasets are generated from 20-
Newsgroups and Reuters-21578, which are two benchmark
text corpora widely used for evaluating transfer learning
algorithms [2], [10], [17], [25], [26].

20-Newsgroups1 has approximately 20,000 documents
distributed evenly in 20 different subcategories. The corpus
contains four top categories comp, rec, sci and talk. Each top
category has four subcategories, which are listed in Table 3.
In the experiments, we can construct 6 dataset groups for
binary classification by randomly selecting two top cate-
gories (one for positive and the other one for negative)
from the four top categories. The 6 dataset groups are comp
vs rec, comp vs sci, comp vs talk, rec vs sci, rec vs talk, and
sci vs talk. Similar to the approach in [25], we set up one
dataset (including source domain and target domain) for
cross-domain classification as follows. For each pair of top
categories P and Q (e.g., P for positive and Q for nega-
tive), their four sub-categories are denoted by P1, P2, P3,
P4 and Q1, Q2, Q3, Q4, respectively. We randomly select
(without replacement) two subcategories from P (e.g., P1
and P2) and two subcategories from Q (e.g., Q1 and Q2)
to form a source domain, then the remaining subcategories
in P and Q (i.e., P3, P4 and Q3, Q4) are selected to form
a target domain. This dataset construction strategy ensures
that the domains of labeled and unlabeled data are related,
since they are under the same top categories. Besides, the
domains are also ensured to be different, since they are
drawn from different subcategories. In this way, for each
dataset group P vs Q, we can generate C2

4 ·C2
4 = 36 datasets.

Clearly, for each example in the generated dataset group,
its class label is either P or Q. In total, we can gener-
ate 6 dataset groups consisting of 6 · 36 = 216 datasets.
For fair comparison, the 216 datasets are constructed using

1. http://people.csail.mit.edu/jrennie/20newsgroups

Fig. 2. Benchmark image datasets PIE, USPS, MNIST.

a preprocessed version of 20-Newsgroups [2], which con-
tains 25,804 features and 15,033 documents, with each docu-
ment weighted by term frequency-inverse document frequency
(TF-IDF).

Reuters-215782 has three top categories orgs, people, and
place. Using the same strategy, we can construct 3 cross-
domain text datasets orgs vs people, orgs vs place and people vs
place. For fair comparison, we use the preprocessed version
of Reuters-21578 studied in [40].

5.1.2 Image Datasets
USPS, MNIST and PIE (refer to Fig. 2 and Table 4) are
three handwritten digits/face datasets broadly adopted in
compute vision and pattern recognition.

USPS3 dataset composes of 7,291 training images and
2,007 test images of size 16 × 16.

MNIST4 dataset has a training set of 60,000 examples
and a test set of 10,000 examples of size 28 × 28.

From Fig. 2, we see that USPS and MNIST follow differ-
ent distributions. They share 10 semantic classes, with each
corresponding to one digit. We construct one dataset USPS
vs MNIST by randomly sampling 1,800 images in USPS
to form the source domain, and sampling 2,000 images
in MNIST to form the target domain. Then we switch the
source/target pair to get another dataset MNIST vs USPS.
We uniformly rescale all images to size 16 × 16, and repre-
sent each image by a 256-dimensional vector encoding the
gray-scale values of all pixels. In this way, the source and
target domain are ensured to share the same feature space.

PIE5, standing for “Pose, Illumination, Expression”, is a
benchmark face database. It has 68 individuals with 41,368
face images sized 32 × 32. The images were captured by 13
synchronized cameras and 21 flashes, under varying poses,
illuminations, and expressions.

In our experiments, we simply adopt the preprocessed
versions of PIE6, i.e., PIE1 [41] and PIE2 [42], which are
generated by randomly sampling the face images from
the near-frontal poses (C27) under different lighting and
illumination conditions. We construct one dataset PIE1 vs
PIE2 by selecting all 2,856 images in PIE1 to form the
source domain, and all 3,329 images in PIE2 to form
the target domain. We switch source/target pair to get
another dataset PIE2 vs PIE1. Thus the source and target
domains are guaranteed to follow different distributions in
the same feature space, due to variations in lighting and
illumination.

2. http://www.daviddlewis.com/resources/testcollections/reuters21578
3. http://www-i6.informatik.rwth-aachen.de/~keysers/usps.html
4. http://yann.lecun.com/exdb/mnist
5. http://vasc.ri.cmu.edu/idb/html/face
6. http://www.cad.zju.edu.cn/home/dengcai/Data/FaceData.html
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TABLE 4
Statistics of the 4 Benchmark Image Datasets

5.2 Experimental Setup
5.2.1 Baseline Methods
We compare ARTL approaches, i.e., ARSVM and ARRLS,
with eight state-of-the-art supervised and transfer learning
methods for text and image classification:

• Logistic Regression (LR)
• Support Vector Machine (SVM)
• Laplacian SVM (LapSVM) [22]
• Cross-Domain Spectral Classification (CDSC) [26]
• Spectral Feature Alignment (SFA) [5]
• Transfer Component Analysis (TCA) [10]
• Large Margin Transductive TL (LMTTL) [15]
• Semi-Supervised Kernel Matching (SSKM) [21]

Specifically, LMTTL is a special case of ARTL with
γ = 0, C = 0, while SSKM can be viewed as a special case
of ARTL with C = 0. SSKM adopts a kernel matching strat-
egy which needs an additional mapping matrix to match
different kernels. Different from SSKM, ARTL seamlessly
integrates the distribution adaptation term into the clas-
sifier based on the regularization theory. Note that we do
not compare with [30] because their work cannot cope with
thousands of training samples.

5.2.2 Implementation Details
Following [1], [10], [21], LR and SVM are trained on the
labeled source data, and tested on the unlabeled target data;
CDSC, SFA, and TCA are run on all data as dimensionality
reduction step, then an LR classifier is trained on the labeled
source data to classify the unlabeled target data; LapSVM,
LMTTL, SSKM, ARSVM, and ARRLS are trained on all data
in a transductive way to directly induce domain-adaptive
classifiers.

Under our experimental setup, it is impossible to auto-
matically tune the optimal parameters for the target classi-
fier using cross validation, since we have no labeled data
in the target domain. Therefore, we evaluate the eight base-
line methods on our datasets by empirically searching the
parameter space for the optimal parameter settings, and
report the best results of each method. For LR7 and SVM8,
we set the trade-off parameter C (i.e., 1/2σ in ARTL) by
searching C ∈ {0.1, 0.5, 1, 5, 10, 50, 100}. For LapSVM9, we
set regularization parameters γA and γI (i.e., σ and γ in
ARTL) by searching γA, γI ∈ {0.01, 0.05, 0.1, 0.5, 1, 5, 10}.
For transfer subspace learning methods CDSC, SFA, and
TCA, we set the optimal subspace dimension k by search-
ing k ∈ {4, 8, 16, 32, 64, 128}. For transfer classifier induction
methods LMTTL and SSKM, we set the trade-off parameter

7. http://www.csie.ntu.edu.tw/~cjlin/liblinear
8. http://www.csie.ntu.edu.tw/~cjlin/libsvm
9. http://vikas.sindhwani.org/manifoldregularization.html

λ between the structural risk functional and the distribution
adaptation term by searching λ ∈ {0.01, 0.1, 1, 10, 100}. We
use linear kernel, i.e., K(xi, xj) = 〈

xi, xj
〉
, for all kernel

methods.
ARTL approaches involve four tunable parameters:

shrinkage/MMD/manifold regularization parameters σ , λ,
γ , and #nearest neighbors p. Sensitivity analysis validates
that ARTL can achieve stable performance under a wide
range of parameter values, especially for σ , λ, and p. In the
comparative study, we fix σ = 0.1, λ = 10, p = 10, and set
1) γ = 10 for the text datasets, and 2) γ = 1 for the image
datasets. In practice, we can simplify model selection by
sequentially choosing optimal parameter values from the
most stable ones to the most sensitive ones. Firstly, since the
adaptation regularization can largely control model com-
plexity, ARTL is very robust to σ , and we can simply choose
small σ such that ARTL does not degenerate. Secondly,
since distribution adaptation is inevitable for transfer learn-
ing, we choose λ such that ARTL can sufficiently match
both the marginal and conditional distributions across
domains. Finally, we can choose γ by following the graph-
based semi-supervised learning framework [22], where p is
often predetermined as KNN methods.

We use the classification Accuracy on the test data (unla-
beled target data) as the evaluation metric, since it is widely
adopted in the literature [5], [10], [17], [30]

Accuracy =
∣∣x:x ∈ Dt ∧ f (x) = y (x)

∣∣
|x:x ∈ Dt| ,

where y(x) is the groundtruth label of x while f (x) is the
label predicted by the classification algorithm.

5.3 Experimental Results
In this section, we compare our ARTL with the eight
baseline methods in terms of classification accuracy.

5.3.1 Results of Text Classification
As 20-Newsgroups and Reuters-21578 are different in hier-
archical structure, we report the results separately.

20-Newsgroups: The average classification accuracy of
ARTL approaches, including ARSVM and ARRLS, and the
eight baseline methods on the 6 cross-domain dataset groups
(216 datasets) are illustrated in Table 5. All the detailed
results of the 6 dataset groups are listed in Fig. 3, subplots
(a)∼(f). Each of these six figures contains the results on the
36 datasets in the corresponding group. The 36 datasets are
sorted by an increasing order of the classification accuracy
obtained by Logistic Regression (LR). Therefore, the x-axis
in each figure can essentially indicate the degree of difficulty
in cross-domain knowledge transfer. From these figures, we
can make the following observations.

ARTL approaches achieve much better performance than
the eight baseline methods with statistical significance.
The average classification accuracy of ARRLS on the 216
datasets is 93.40%. The performance improvement is 5.37%
compared to the best baseline method SSKM, which means
a very significant error reduction of 44.86%. Since these
results are obtained from a large number of datasets,
it can convincingly verify that ARTL can build robust
adaptive classifiers for classifying cross-domain documents
accurately.
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TABLE 5
Average Classification Accuracy (%) on the 6 Cross-Domain Text Dataset Groups Comprising of 216 Datasets

Secondly, we observe that all the transfer learning
methods can achieve better classification accuracy than
the standard learning methods. A major limitation of
existing standard learning methods is that they treat
the data from different domains as if they were drawn
from a homogenous distribution. In reality, the identical-
distribution assumption does not hold in the cross-domain
learning problems, and thus results in their unsatisfactory
performance. It is important to notice that, the state-of-
the-art semi-supervised learning method LapSVM cannot
perform better than LR and SVM. Although LapSVM can
explore the target data in a transductive way, it does
not minimize the distribution difference between domains.
Therefore, it may overfit the target data when the dis-
criminative directions are significantly different between
domains.

Thirdly, we notice that ARTL significantly outper-
forms CDSC, SFA, and TCA, which are state-of-the-
art transfer subspace learning methods based on fea-
ture transformation. A major limitation of existing trans-
fer subspace learning methods is that they are prone
to overfitting, due to their incapability to simultane-
ously reduce the difference in both marginal and con-
ditional distributions between domains. Although SFA
works particularly well for sentiment classification, it works
fairly for text classification, and the reason is that SFA
only explores feature co-occurrence for feature alignment

without considering feature frequency, which is effective
for low-frequency sentiment data but not effective for high-
frequency text data. ARTL addresses these limitations and
can achieve much better results.

Fourthly, we observe that ARTL achieves much better
performance than LMTTL and SSKM. Notice that, LMTTL
and SSKM are typical transfer classifier induction methods,
which can induce a supervised/semi-supervised classi-
fier and meanwhile minimize the distribution difference
between domains. However, since the difference between
the conditional distributions is not minimized, while the
regularization terms are not imposed to the classifier, it
is likely that these methods cannot fully reduce the distri-
bution difference and may get stuck in poor local optima.
ARTL achieves superior performance by alleviating these
limitations.

Lastly, ARTL approaches often perform more robustly on
difficult-to-classify datasets than all baseline methods. This
can be observed from Figs. 3∼3, where the improvements
of ARTL over the baseline methods are more remarkable on
datasets in which LR performs with extremely low accuracy
(below 70%).

Reuters-21578: The classification accuracy of ARTL
and the baseline methods on the 3 datasets generated
from Reuters-21578 are illustrated in Fig. 4(a). We observe
that ARTL has outperformed, or achieved comparable
performance than the baseline methods.

(a) (b) (c)

(d) (e) (f)

Fig. 3. Classification accuracy of LR, CDSC, SFA, TCA, LMTTL, SSKM, and ARRLS on the 216 text datasets: (a) comp vs rec. (b) comp vs sci.
(c) comp vs talk. (d) rec vs sci. (e) rec vs talk. (f) sci vs talk.
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(a) (b)

Fig. 4. Classification accuracy of LR, SVM, LapSVM, CDSC, TCA, LMTTL, SSKM, ARSVM, ARRLS, ARRLS+: (a) Reuters-21578. (b) Image
datasets.

We notice that, Reuters-21578 is more challenging than
20-Newsgroups, since each of its top categories consists of
many subcategories, i.e., clusters or subclasses. Therefore, it
is more difficult to minimize the distribution difference by
only matching the sample moments between domains. This
reason can explain the unsatisfactory performance obtained
by distribution adaptation methods, i.e., TCA, LMTTL, and
SSKM.

By minimizing the distribution difference between both
marginal and conditional distributions, ARTL can natu-
rally match more statistical properties, i.e., both domain
centroids and class centroids. Also, by maximizing the
manifold consistency, ARTL can fully explore the marginal
distributions, which can implicitly “rotate” the decision
hyperplane to better respect the target data. In this way,
ARTL can perform better on difficult datasets with many
classes or subclasses.

5.3.2 Results of Image Recognition
The average classification accuracy of ARTL and the six
baseline methods on the four image datasets is illustrated
in Fig. 4(b). SFA is not compared since it cannot handle
non-sparse image data, while LapSVM and ARSVM are not
compared since their original implementations cannot deal
with multi-class problems.

We notice that, the transfer subspace learning meth-
ods, e.g., CDSC, generally outperform standard LR and
SVM. This is an expected result, since subspace learning
methods, e.g., PCA, are very effective for image represen-
tation. Unfortunately, TCA has generally underperformed
CDSC at this time. The main reasons are two-folds: 1) the
MMD distance measure is not very suitable for image data,
as exemplified by [12]; 2) the distribution difference is
significantly large in the image datasets, resulting in the
overfitting issues.

We also notice that, the transfer classifier induction
methods, i.e., LMTTL and SSKM, outperform CDSC in the
face datasets but underperform CDSC in the handwritten

digits datasets. We conjecture the reasons as follows: 1) for
the face datasets, there are 68 classes, thus transfer clas-
sifier induction methods which directly inject the labeled
information into the learning procedure, are more effective;
2) for the handwritten digits datasets, data reconstruction
may be a more important process to reduce the distribution
difference.

In conclusion, ARTL generally outperforms all baseline
methods. Therefore, we can often achieve a robust adap-
tive classifier, by minimizing the difference between both
marginal and conditional distributions, and meanwhile
preserving the manifold consistency.

5.4 Effectiveness Verification
We verify effectiveness of ARTL by inspecting the impacts
of base classifier and adaptation regularization.

5.4.1 Base Classifier Integration
ARTL utilizes some base classifier, e.g., SVM, to obtain
the pseudo labels for the target data, through which the
difference between the conditional distributions is mini-
mized. Unsurprisingly, if we use some adaptive classifier,
e.g., ARRLS, to obtain more accurate pseudo labels for the
target data, then we can match the conditional distribu-
tions more accurately and further boost the classification
accuracy. It is very interesting that ARTL can accept its out-
puts as inputs to iteratively improve itself. We denote this
alternatingly enhanced version of ARRLS as ARRLS+. We
run ARRLS+ on the image datasets, and show its classifica-
tion accuracy in Fig. 4(b). Similar results on other datasets
are omitted due to space limitation. We note that ARRLS+
has significantly outperformed ARRLS by 10.60%, which
verifies ARTL can naturally integrate base classifiers.

5.4.2 Adaptation Regularization
To inspect the effectiveness of each criterion, we run ARRLS
on a randomly selected dataset, e.g., rec vs sci 1, by remov-
ing one term from its objective function.

(a) (b) (c) (d)

Fig. 5. Classification predictions Kα and classifier parameters α output by ARRLS on the rec vs sci 1 dataset: (a) C = 0. (b) λ = 0. (c) γ = 0.
(d) Optimal parameters.
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(a) (b) (c) (d)

Fig. 6. Parameter sensitivity study for ARTL on selected datasets (dashed lines show the best baseline results): (a) Nearest neighbors p.
(b) Shrinkage regularization σ . (c) MMD regularization λ. (d) Manifold regularization γ .

First, we remove the conditional distribution adaptation
term by setting C = 0 as in Fig. 5(a). In this case, we cannot
even find a clear decision hyperplane for the target data,
i.e., the target data are not well separated at all. This verifies
the crucial role that the conditional distribution adaptation
has played. Similar results can be observed from Fig. 5(b),
in which we remove the whole distribution adaptation term
by setting λ = 0. The similar results between C = 0 and
λ = 0 implies that minimizing the difference between the
conditional distributions is much more important than that
of the marginal distributions. With conditional distribution
adaptation, we can make the intra-class centroids close and
the inter-class centroids more separable, as can be clearly
observed from Fig. 5(d).

Secondly, we remove the manifold regularization term
by setting γ = 0 as in Fig. 5(c). In this case, the predic-
tions are scattering in a wider range than the groundtruth
[ − 1, 1]. In other words, the manifold consistency under-
lying the target data is violated, regardless that the target
data are better separated due to the distribution adapta-
tion of both the marginal and conditional distributions.
Therefore, to induce a good adaptive classifier using the
ARTL framework, it is very important to preserve the
manifold consistency. The importance of the manifold reg-
ularization can be observed by comparing Fig. 5(c) with
Fig. 5(d).

5.5 Parameter Sensitivity
We conduct empirical parameter sensitivity analysis, which
validates that ARTL can achieve optimal performance
under wide range of parameter values. Due to space lim-
itation, we randomly select one generated dataset from
20-Newsgroups, Reuters-21578, USPS & MNIST, and PIE
respectively, and discuss the results.

#Nearest Neighbors p: We run ARTL with varying val-
ues of p. Theoretically, p should be neither too large nor
too small, since an extremely dense graph (p → ∞) will
connect two examples which are not similar at all, while an

TABLE 6
Time Complexity of ARTL and the Baseline Methods

extremely sparse graph (p → 0) will capture limited similar-
ity information between examples. We plot the classification
accuracy w.r.t. different values of p in Fig. 6(a), which
indicates a wide range p ∈ [4, 64] for optimal parameter
values.

Shrinkage Regularization σ : We run ARTL with vary-
ing values of σ . Theoretically, σ controls model complexity
of the adaptive classifier. When σ → 0, the classifier
degenerates and overfitting occurs. On the contrary, when
σ → ∞, ARTL is dominated by the shrinkage regulariza-
tion without fitting the input data. We plot the classification
accuracy w.r.t. different values of σ in Fig. 6(b), and choose
σ ∈ [0.001, 1].

MMD Regularization λ: We run ARTL with varying
values of λ. Theoretically, larger values of λ make distribu-
tion adaptation more effective. When λ → 0, distribution
difference is not reduced and overfitting occurs. We plot
classification accuracy w.r.t. different values of λ in Fig. 6(c),
and can choose λ ∈ [5, 1000].

Manifold Regularization γ : We run ARTL with vary-
ing values of γ . Theoretically, larger values of γ make
manifold consistency more important in ARTL. When
γ → ∞, only manifold consistency is preserved while
labeled information is discarded, which is unsupervised.
We plot classification accuracy w.r.t. different values of γ

in Fig. 6(d), and choose γ ∈ [0.1, 10].

5.6 Time Complexity
We empirically check the time complexity of all algorithms
by running them on the comp vs rec 1 dataset with 25,800
features and 8,000 documents, and show the results in
Table 6. We see that ARRLS can achieve comparable time
complexity as the baseline methods.

6 CONCLUSION

In this paper, we proposed a general framework, referred
to as Adaptation Regularization based Transfer Learning
(ARTL), to address cross-domain learning problems. ARTL
aims to simultaneously optimize the structural risk func-
tional, joint distribution adaptation of both the marginal
and conditional distributions, and the manifold consis-
tency. An important advantage of ARTL is that it can
explore as many necessary learning objectives as pos-
sible, yet still remain simple to implement practically.
Furthermore, many existing supervised learning algo-
rithms, e.g., RLS and SVM, can be readily incorporated into
the ARTL framework. ARTL is robust to the distribution
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difference between domains, and can significantly improve
cross-domain text/image classification problems. Extensive
experiments on 219 text datasets and 4 image datasets
validate that the proposed approach can achieve superior
performance than state-of-the-art adaptation methods.
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